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Summary. Handy et al. have shown that the asymptotic behavior of Hartree-  
Fock orbitals is controlled by the energy of highest occupied molecular orbital, 
except for the atomic case in which only s-orbitals are occupied. However, their 
proof is not complete at one point. This point is clarified, and a more unified 
derivation is given. Further, we discuss the preexponential factor r ~ of the 
leading asymptotic term r ~ exp[-fir],  where fl = (--2eHoMo)1/2 and eHOMO is the 
orbital energy of HOMO. New results are obtained for linear molecules, and the 
results of several authors for atoms and non-linear molecules are reproduced. 
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1. Introduction 

The investigation of the long-range behavior of wave functions is important 
because the long-range behavior of the charge densities is one of the indispens- 
able points in the search for an unknown energy density functional. Also, the 
long-range behavior of wave functions is important in the discussion of  interact- 
ing systems, because the long-range part of wave functions plays an essential role 
when intermolecular potentials and energy transfer are considered. Since the 
exponent of most diffuse function determines the asymptotic behavior in the 
basis function expansion approach, the investigation of this behavior is signifi- 
cant for the determination of basis sets. The variation principle is almost always 
used to determine wave functions. It is difficult, however, to determine tails of 
wave functions from the variation principle because the long-range behavior of 
wave functions has little effect on energy values. Recently, we studied wave 
function tails by application of the exterior electron model [1]. 

The upper bound of  total wave functions has been discussed and atomic and 
molecular wave functions have been found to decay exponentially [2], 
exp[ -(2•)l/2r], where I is the first ionization potential and r is the radial distance 
from the origin. When a molecule has an inversion center, this defines the origin. 
However, when the molecule does not have an inversion center, we can, for 
example, take the center of nuclear charges as the origin. For natural orbitals, 
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the decay of the wave function is also exponential [3]. The asymptotic behavior 
is also studied from the view point of the momentum space [4-6]. Lassettre 
studied the analytic behavior of momentum eigenfunctions, under various poten- 
tials including the Hartree-Fock potential, in the complex momentum plane, 
and found the relation of the singular points in the plane with the asymptotic 
behavior of coordinate space eigenfunctions [4]. Koga applied the zero potential 
criterion to the Hartree-Fock wave functions, and suggested that the Hartree- 
Fock approximation cannot describe the correct long-range behavior of many- 
electron wave functions [5].  Casida and Chong discussed momentum 
distributions with the "large r approximation", and claimed that the important 
large r parts of molecular orbitals behave like the Hartree orbitals rather than 
the Hartree-Fock orbitals [6]. These conclusions are based on the following 
results of Handy et al. [7]. However, there is an incomplete point in the 
discussion in [7]. 

In this paper, the incomplete point is clarified and the asymptotic behavior is 
analysed with a matrix treatment of the differential equation. The present 
treatment is more general and unified, although the results are the same as those 
obtained by Handy et al.: (1) The asymptotic behavior of the Hartree-Fock 
orbital is found to be controlled by the orbital energy of the highest occupied 
molecular orbital (HOMO) except for the atoms that only have s-orbitals. 
(2) The behavior of each orbital of the atoms whose orbitals are all s-type is 
determined by the energy of each orbital. Further, we obtain the preexponential 
factor r ~' of the leading term of the asymptotic form r ~" exp[ -flir]. Our treatment 
yields new results for linear molecules, and reproduces the known results for 
atoms [8] and non-linear molecules [9]. 

2. An example counter to the previous treatment 

For a closed-shell system with N doubly occupied orthonormal orbitals ~O~ 
(i = 1, 2 , . . . ,  N), Hartree-Fock equations for polyatomic molecules are 

~ dr' ( 
- - +  Jlr-r'l 2 j = l  

( j  ~ i) 

= ~bj(r) ~k* (r')~k i(r') (i 1, 2 . . . . .  N), 
j = l  

(1) 

where RA and ZA are the position vector and the nuclear charge of the nucleus 
A, respectively, and e i is the orbital energy for ~ki. 

The angular parts of the kinetic energy, nuclear attraction potential, and 
Coulomb operators are all negligible compared with ei at a large r. On the other 
hand, the right hand side of Eq. (1), that corresponds to the exchange operators, 
cannot be neglected. This was pointed out by Handy et al. [7]. Then, the general 
asymptotic form of the Hartree-Fock equations is reduced to 

2 dr z ei ~k,(r) ,-~ ~ Kj,(r)~bj(r) (i = 1, 2 . . . . .  N), (2) 
j = l  
(j  ~ i) 

where 
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dr' , . .  
Kj;.(r) = J ~ - r ' [  ~kj (r')~ki(r') (i = 1, 2 , . ,  N). (3) 

The following equation was deduced from Eq. (2) in Ref. 7: 

~ . f i A j ) ~ h i . . ~ O ( i = I , 2 , N ) , = I  . . . .  (4) 

where 

1 d z 
Aj = 2dr2 ej. (5) 

In their derivation, Handy et al. assumed [7] that KN~Km~h s goes to zero more 
quickly than Kj;AN~kj. However, this assumption is not always valid as is shown 
in the following discussion. 

The Laplace expansion [10, 11] for 1/Ir-  r' I is 

1 -4 re  Y' x T ° °  I 1 r a YT'*(O, 49) YT'(O', 49') (r' < r) 
[r - r ' l  ,~o,, z - ' =  =-  , 2 / + l r  t+l 

o~ t 1 r 1 
=4re ~, ,,=-Z t Z / + l  r 't+' YT/*(O, 49)Y']'(O',49') ( r ' > r ) ,  (6) 

where YT'(0, 49) denotes the spherical harmonic. When this expansion is substi- 
tuted for Kjj, we obtain 

4 ~ 1 ~ Y'f*(0,49) Kji= rct~0 2l + 1 ,,=_t 

x 1 dr'r a+2 sinO'dO'd~'Y~(O',,~%l,*.¢r' ' ' "1"7 1"r  J ,, , O r ,  ¢ ) ~ 1  i ( r  , 0', ¢') 
' ~ 0  

m v t ~ t t t p + r I dr' r '1 - t  sin 0' dO' d49' Yt (0,49)$s (r, O, 49 )~,i(r, 0', 49') . 
t l r '  = r 

(7) 
Let us consider the atomic case: 

~k,(r, O, 49) = R,(r)Y?ffO, 49). (8) 

Substitution of Eq. (8) into Eq. (7) gives 
00 1 

Kj,~h k = 4nY~*(O, 49) ,~=o 2l + 1 

Y, (0,49) (O',49')Y~,(O',49')Y'~(O',49')sinO'dO'd49' × E m* 

IRk(r) f~r,t+ZRj(r,)R,(r,)dr, 
×1/+, Jo 

Rk(r) ~o~ ~oo Rj(r')Ri_(r') dr']. (9) 
J, r't+ZRj(r')R'(r')dr' +rtRk(r) L r't-1 

The first term in the bracket [ ] of  Eq. (9) is O(R~(r)//+ 1), where O denotes "of  
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the order of". It is noted that the first term is zero when l = 0 because of the 
orthogonality of orbitals. Both the second and third terms are 
O(r2Ri(r)Rj(r)Rk(r)). Let us consider the ratio of the second and third terms to 
the first term: 

r2Ri(r)Rj(r)Rk(r) - rt+ 3Ri(r)Rj(r) ~ 0  (r ~ 00). (10) 
Rk(r)/r l+1 

This estimation shows the second and third terms go to zero more quickly than 
the first term. The smallest l for which the angular integral does not < vanish 
determines the order (l + 1) of 1/r in Rk(r) / /+~.  The integral with respect to 
angular variables 0' and ~b' can be expressed by Wigner 3 - j  symbols. Thus, the 
angular integral does not vanish for I I - / j l  ~<l; ~<l+/j ,  mj = m  +mi  and 
l + l; + / j  + m + m t + mj is even. When l,. = lj = 0, i.e., ~t and ~kj are s-type, the 
first integral with respect to r in [ ] is zero for l = 0, and the angular integral 
vanishes for / # 0. Therefore, if both ~kt and ~ are s-type, Kji(r)qJk(r) ~ ~k(r). In 
the other cases, Kjt(r)~kk(r)= O(qJk(r)/rn), where n = 3 when It = l i # 0 ,  and 
n = lit - lj[ + 1 when It ~ lj, according to the angular integral. Thus, 

[O(~k(r)/r p) (li = lj = O) 
Kjt(r)~kk(r) = ~O(~kk(r)/r 3) (lt = / j  :/: O) (11) 

( O ( ¢ k ( r ) / r  Iti-ljl+ l) (l i =/:/j), 

where o indicates an infinitesimal of higher order, p is an arbitrary positive 
number. 

In order to clarify the incomplete point in the treatment of Handy et al., let 
us consider a Ne atom, for example. If  we choose p = 4, the above discussion 
leads to  K2s, ls~ll2s 4~ 1112s/r 4, g2p, lsllt2s = O(ll12s/r2), and K2s,2pl/12s -~ O(I/12s/r2). If  we 
assume that i, j and N are the Is, 2s and 2p orbitals, respectively, 
KNtKj.N$ J = (O(q*zs/r4)) does not vanish as quickly as KjtAN~k j (~$2,/r4).  This 
discussion for Ne indicates that the proof is not valid for atoms that have at least 
two s-orbitals and another orbital with non s-symmetry such as Mg, Ar and Ca 
atoms. 

3. A t r e a t m e n t  w i th  a m a t r i x  f o r m  

To fully derive Eq. (4), we rewrite Eq. (2) in a matrix form 

d2~ 
dr 2 = A ~ ,  

where 
a , ,  a2 a2 
dr 2 = \ d r 2 0 1 , ~ r 2 ~ b 2  . . . . .  ~ r2ON 

= ' ( ¢ , ,  q~2, • • • ,  C N ) ,  

e ,  f , , ( O  f , ~ ( O  
f2, (r) e2 f23 (r) 

A =  f31 (r) f32 (r) e3 

fN ~  (r )  f N ~ ( r )  f N 3 ( r )  

• . f , u ( r )  

" ' "  A N ( r )  

• "" A N ( r )  

• ' '  e N 

(12) 

(13) 

( 1 4 )  

(15) 
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and 

ei = - 2ei, (16) 

fT(r) = -- 2Kji(r). (17) 

The ~j for atoms shows a stronger decay than 1/r 2 [8], so, as pointed out in the 
previous section: 

fo( 1/r p) (Ii = 6 = O) 
fo- =  o(1/r3) (l, = 6 # 0) (18) 

[O(1/rl6-t/+1) ( l  i # l j ) .  

In linear molecules, since [rail specifies the symmetry of  an orbital i, O~ is 
expanded in the following form: 

O,= ~ Ru,(r)Y~'(O, 49). (19) 
1 i = ]mi[ 

From this form of  the orbital, the order n of 1/r for f j  is derived through a 
discussion similar to that for atoms: 

~0( 1/r 2) (m~ = m j) 
fj(r) = ~ O ( l / r l m i _ m j l + l )  (mi #mj). (20) 

The derivation is presented in the Appendix. In non-linear molecules, 

~li = ~ ~ Rilimi(r)Y~ii(O, ~9), (21) 
I i = 0 m i = - I  i 

because there are no limitations on l and m. Since only the term with l = 0 
vanishes in Kji~k, owing to the orthogonality of  orbitals, 

fj(r) = O(1/r2). (22) 

Consequently, f~j(r) is at most the order of 1/r 2 in all cases. 
I f  we tentatively assume that fj(r) is a constant, i.e., A is a constant matrix, 

we can define the characteristic polynomial of  A: 

fA(x) = [A - xE], (23) 

where E is the N-dimensional unit matrix. When we rewrite the characteristic 
polynomial fA(x) as follows: 

N 

fA(x) = Z ak xN-~ (24) 
k = O  

and the coefficients ak are 

I ei, f,i~ fli3 "'" f , ik]  
f2i, ei2 f2i3 "'" f2ik 

ak = ( - 1 )  N-k ~ det f 3 i l  f3i2 el3 "'" f3ik . (25) 
i l < i 2 < i 3 < ' ' ' < i k  . . . . . . . . . . . . . . .  

fkil fi~i2 f'~i3 "'" elk 
Since f**  C e ,  holds for a sufficiently large r, we can neglect the third and 



360 T. Ishida and K. Ohno 

higher order o f f** :  

ao = ( - 1) u 

N 

a , = ( - 1 )  u - '  ~ e, 
i = l  

N 

a2 = (--1) N-2 2 eiej + O ( f { , )  
i < j  

N 

a3= (--1) N-3 2 eieyek + O(f**)2 
i < j < k  

N 

aN = 1-I ei + O(f2**). 
i = l  

The characteristic equation is therefore 
N 

(26) 

is valid, i.e., 

• f0"PJ; = O( , )  
(30) 

[(ey --e,)p) i + k~jfjkpki = O(f2**) ( j  ~ i) 

holds for the components of pi. If  we substitute the following pj~ into Eq. (30): 

p,, = 1 + O(f2**), (31a) 

and 

Pj-i = 0 ( j  ¢ i, ej = e;) 
fj, (31b) 

[PJ' e, - ej + O(f2**) (e: ¢ e,), 

Eq. (30) holds. Therefore, if we neglect the second order off**,  a solution of Eq. 
(12) with constant matrix A is 

~b/~ exp[-e)/2r] + ~ fJ' exp[ -e)/2r]. (32) 
h 

j # i  e i - - e j  
e j "b e i 

It is noted that this solution is obtained under the assumption that f7 is constant. 
Therefore, the validity of the solution must be examined. When we substitute Eq. 

1-I (x -- ey) + O(f2,)(polynomial  of x) = 0. (27) 
j=l 

Thus, a solution of Eq. (27), i.e., an eigenvalue of the constant matrix A, is 

x = e, + O ( f 2 , ) .  (28) 

If  we assume that Pi = t(Pli, P 2 i , ' ' ' , P N i )  is the corresponding eigenvector, the 
equation 

[A - (e i + O( f2 , ) ) ]p ,  = 0, (29) 
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(32) into Eq. (12), we find that Eq. (4) holds if we neglect the second and higher 
terms of f** .  Thus, 

fji(r) ~ki ~ exp[-e)/2r] + ~ exp[ -el/2r]. (33) 
j~-i ei- -~ 
ej~ei 

Although the solution seems to show that the orbital energy of the j-th orbital 
is not responsible for the asymptotic behavior of the i-th orbital when fij(r) = O, 
the term exp[ -e}/2r] is included in the general asymptotic form of ~k~ because of 
the existence of the second or higher orders off**.  The form of ~k i at large r does 
not include the term corresponding to the orbital energy ej only when the 
products f~k(r)fkj(r),fa,(r)f,t(r)fo(r) . . . . .  fa~,(r)fk2k3(r)...fk~v_zi(r) are all zero, 
i.e., ~k~ belongs to a block, say A~, different from that to whmh qO belongs, where 
Az is the I-th block in the block diagonal form of A. Thus, all orbitals that 
belong to the same block are controlled by the energy of the highest orbital (h) 
in the relevant block. 

4. The leading term of  asymptotic forms for atoms, linear and non-linear molecules 

In order to discuss the asymptotic behavior in more detail, we consider the 
following equation taking the order of 1/r into account [8, 9] 

I l d 2 1 d  Z + l  ] N 
ei ~]i '~" E gJi~-IJ , (34) 2dr  2 r dr r j,,i 

where Z = ~ a  Z~ - 2N is the charge of the system. As for ~kh, we can neglect the 
contribution from the exchange parts: 

[ l d 2 1 d  Z + l  ] 
2dr  2 r dr r Sh ~kh ~O. (35) 

Since this equation no longer has exp[-flhr], where flh = e~/2= (-2eh)  ~/2, as a 
solution we have to search for a solution of the form 

(r=h + O(r,h - I)) exp(--flhr). (36) 

Handler et al. [8] and Davis et al. [9] have shown that 

• h = ( Z  + 1)/flh - 1. (37) 

When the system is neutral, ~h = 1~fin - 1 because Z is the charge of the system. 
This result indicates that the asymptotic behavior of ~ki is 

~kj ~ r ~h -a exp[ --flhr], (38) 

where 2 is the lowest order of 1/r of fib(r), fikl(r)fk,h(r), 
f k ,  (r)fk, k 2(r)fk 2h (r) . . . . .  fu,~ (r)fk, k2 ( r ) . . .  fk,. -h (r) (usually, the order of fh (r)) 
when i ~h ,  and 2 = 0 when i =h.  The general result in Eq. (38) leads to the 
results for atoms, linear molecules, and non-linear molecules. 

The result in Eq. (38) combined with Eq. (18) reproduces the form obtained 
by Handler et al. [8] for atoms that have an orbital other than s-orbitals: 

f r ' "  exp [ -  flHr] (i = H) 
~k, .,~ r'n - 3 exp[--flHr] (l~ =1H -~0, i # H )  (39) 

rCZH -- 2(lrnin ~ 

-*1 - ,  exp[-/~,r]  (l~ #IH), 
r "-tz~ +t)exp[-flHr] (1,. lu 0, i # H )  
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where H denotes the HOMO of the atom, not of the block, and fin = (--2en)1/2, 
an = ( Z  + 1)/fin - 1, /rain is the smallest nonzero orbital quantum number of the 
atom considered. For atoms that have only s-orbitals, the leading term of 
asymptotic form is 

~i "~ r~' exp[ -flir], (40) 

where fli = ( - 2 e l )  1/2 and ~i = ( Z  ÷ 1)/fli - 1. 
For linear molecules, we obtain the following results from Eq. (20): 

~" r "" exp[-  flHr] (i = H )  
~i ~ "~ ran -2 exp[--flHr] (m i = rnn, i ~ H )  (41) 

t,.r ~M-I'i-m~l-1 exp[-- f lur]  (mi % m u ) .  

The second and third results for ¢i % ~ku are new ones, since although Davis et 
al. discussed the asymptotic form for molecules [9], they did not explicitly 
consider the case of linear molecules. 

For non-linear molecules, the result obtained by Davis et al. [9] is reproduced 
from Eq. (22): 

)'r ~" exp[ --flHr] (i = H )  (42) 
~i ~ ( r , u _ 2 e x p [ _ f l I 4 r ]  (i # H) .  

In summary, the behavior of ~0~ is determined by the energy of the HOMO 
in most cases although the preexponential factors are different. The preexponen- 
tial factors are usually determined by the order of r for f~-H. On the other hand, 
the behavior of the orbitals in the atoms that have only s-orbitals is determined 
by their own orbital energy because the matrix element f~j vanishes when both of 
i and j orbitals are s-type. In the previous treatment [7], the Be atom was 
considered separately. In this treatment, however, the exceptional behavior of the 
Be atom emerges from the general consideration. Moreover, new results are 
obtained for the leading asymptotic form in non-linear molecules. 

From an analysis similar to the above, the asymptotic forms of all orbitals in 
the open shell RHF scheme can be shown to be ~ r~n-~exp[ - ( -2~) l / 2 r ] ,  
where 2 is determined in the same way as in the closed shell RHF scheme. 
In this open shell scheme, the Li atom has the asymptotic behavior 
~l~ "~ r~" exp[-(-2e1~)l/2r] and ~k2~ ,-~ r ~ exp[-(-2e2~) l/2r]. 

In the UHF scheme, the asymptotic behavior of a and fl orbitals is deter- 
mined by the highest occupied a spin orbital ~k~ and the highest occupied fl spin 
orbital ~ ,  respectively, It is noted that when the outermost shell is half or less 
filled in the ground state of the atom, the orbital quantum number of ~ is 
different from that of ff~. For example, in the Na atom, the behavior of the a 
orbitals is controlled by the energy of ~ ,  whereas that of fl orbitals is controlled 
by the energy of ~ ~p. In particular, in the B, C and N atoms the behavior of the 

orbitals is controlled by the energy of ~k~p because these atoms have ~k~, ~k~ 
and ¢~p orbitals, whereas the behavior of each fl orbital is controlled by the 
energy of each orbital because only ffq~ and ~k~ orbitals are occupied. In 
molecular cases, for example 02, the behaviors of a and fl orbitals are controlled 
by the energy of lug and ln~ orbitals, respectively. In the Li atom, each orbital 
(~b~, ~b~, and ~kq~) is controlled by the energy of each orbital, which is similar 
to the behavior in the open RHF scheme. 
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Appendix 

In linear molecules, since ~,. is represented by Eq. (19) 

~ , =  ~., Ru,(r)Y~'(O,¢), (A1) 
li = [mil 

the equation corresponding to Eq. (19) is 

Kjil~k =4= ~ Y~tkk(O, ¢) ~ 1 ~ Y~*(O, ¢) 
1,=1,,,I /=o 2l + 1 m =  --1 

x Y~J*(O', ¢')Y~'(O', ¢')Y7'(0',  ¢') sin O' dO' de '  
l i = [rail lj = Imjl s 

FRkt*(r) _I °° ,1+2 , , Rktk(r) 
x L rl+ 1 .v r Rj~(r )Rili(r ) dr' rZ + i 

~ ,1+2 , , ;°~R.ili(r')Rib(r')-,] 
x r Rj l j (  r )Ri l i (  r ) d r '  -{- rtRkzk(r) r,t- 1 ar j .  (A2) 

The difference of Eq. (A2) from Eq. (19) is the presence of additional summa- 
tions with respect to l,- and /]. The term with m ¢ Im; - % 1  and the term with 
l = 0 vanish, respectively from the evaluation of the angular integral and because 
of orthogonality of orbitals. When mi = m s, the term with l = m = 0 is precluded, 
and all the terms with l~> 1 do not vanish because the terms with l ~> 1 
necessarily include the term m = [me - mj [( = 0). Thus, 

Kj, O, = O(¢k /r2). (A3) 

It is noted that this result is valid even for m,-=mj = 0 unlike the case of 
li =/j  = 0. When mi ¢ mi, the terms with l < [mi - m i [  are precluded, but all the 
terms with l/> Im,-% [ do not vanish because uchs terms always include the 
term m = ]m; - %1" Therefore, 

g j i l / I  k = 0(~1 k/rJ"'-msl + '). (A4) 

Consequently, f).(r) behaves as 

0( 1/r 2) (m, = ms) 
f i j ( r )  = O ( l / r  Im i -m j l+ . )  (m, ¢rnj),  (A5) 

which is identical with Eq. (20). 

References 

1. a Ohno K, Ishida T (1986) Int J Quantum Chem 29:677-688 
b Ishida T, Ohno K (1989) Int J Quantum Chem 35:257-266 

2. a Ahlrichs R (1972) Chem Phys Lett 15:609-612 
b Ahlrichs R (1972) Chem Phys Lett 18:521-524 
c Hoffmann-Ostenhof M, Hoffmann-Ostenhof T (1977) Phys Rev A 16:1782-1785 
d Hoffmann-Ostenhof T, Hoffmann-Ostenhof M, Ahlrichs R (1978) Phys Rev A 18:328-334 
e Tal Y (1978) Phys Rev A 18:1781-1783 
f Katriel J, Davidson ER, Proc Natl Acad Sci USA 77:4403-4406 
g Ahlrichs R, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T (1981) Phys Rev A 23:2106-2117 



364 T. Ishida and K. Ohno 

3. a Morrell MM, Parr RG, Levy M (1975) J Chem Phys 62:549-554 
b Ahlrichs R (1976) J Chem Phys 64:2706-2707 
c Levy M, Parr RG (1.976) J Chem Phys 64:2707-2708 
d Silverstone HJ, Carrol DP, Metzger RM (1979) J Chem Phys 70:5919-5921 
e Carrol DP, Silverstone HJ, Metzger RM (1979) J Chem Phys 71:4142-4163 

4. a Lassettre EN (1976) J Chem Phys 64:4375-4389 
b Lassettre EN (1979) J Chem Phys 70:3468-3487 
c Huo WM, Lassettre EN (1980) J Chem Phys 72:2374-2383 
d Lassettre EN (1981) J Chem Phys 74:1225-1238 
e Lassettre EN (1985) J Chem Phys 82:827-840 
f Lassettre EN (1985) J Chem Phys 83:1709-1721 

5. a Koga T (1985) J Chem Phys 83:6301-6303 
b Koga T (1988) J Chem Phys 89:4209-4211 

6. Cassida ME, Chong DP (1989) Chem Phys 132:391-405 
7. Handy NC, Marron MT, Silverstone HJ (1969) Phys Rev 180:45-48 
8. Handler GS, Smith DW, Silverstone HJ (1980) J Chem Phys 73:3936-3938 
9. Davis CL, Jensen HJA, Monkhorst HJ (1984) J Chem Phys 80:840-855 

10. Hobson EW (1955) The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York 
11. In Ref. 7, the integral with respect to r'  was treated without dividing integral region. However, 

the integral region should be divided into 0 to r and r to ~ according to each Laplace expansion 
for r ' < r  and r ' >  r 


